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أهميته تم اختيار هذا البحث من قبل مركز أبحاث الذكاء الاصطناعي )أيرند( لتقديم تلخيص يبرز 

 ويقربه للباحثين

 

لتطوير  (Monolingual Data) يقُدم هذا البحث نموذجًا مبتكرًا يستخدم البيانات المونوغوية فقط

، مما يعُد نقلة نوعية في (Unsupervised Machine Translation) نظام ترجمة آلية غير موجه

بين  (Parallel Data) موازية حيث لا يتم الاعتماد على بيانات (NLP) معالجة اللغات الطبيعية

 .اللغات

 
 النقاط الرئيسية في البحث

 مفهوم الترجمة الآلية غير الموجهة

 يعتمد النموذج على تمثيل الجمل من لغتين مختلفتين في فضاء مشترك (Shared Latent 

Space) ًمما يتُيح للنموذج فهم العلاقة بين اللغتين دون الحاجة إلى جمل مترجمة مسبقا. 

 يتم تدريب النموذج على إعادة بناء الجملة في نفس اللغة (Denoising Auto-

encoding) وأيضًا على ترجمة الجملة بين اللغتين باستخدام الترجمة العكسية (Back-

translation). 

 يتم ضبط تمثيل الجمل باستخدام تقنيات الخصومة التوليدية (Adversarial Training) 

 .مشترك للجمل في كلا اللغتين متشابهلضمان أن التمثيل ال

 
 معالجة التحديات في النماذج التقليدية

  :الاعتماد على البيانات الموازية .1

o  النماذج التقليدية تتطلب آلاف أو ملايين الأزواج من الجمل المترجمة، وهو أمر

 .مكلف وغير متاح للغات منخفضة الموارد

  :بين اللغات صعوبة التعامل مع العلاقات غير المباشرة .2

o  نماذج الترجمة التقليدية تواجه صعوبة في الربط بين اللغات التي تختلف بشكل كبير

 .في الصياغة أو القواعد

  :تعقيد التدريب .3

o النماذج التقليدية تحتاج إلى موارد ضخمة عند التعامل مع بيانات ضخمة ومتنوعة. 

 
 آلية عمل النموذج المقترح

  :(Auto-encoding) إعادة بناء الجملة .1

o يتم تدريب النموذج على إعادة بناء جملة مضاف إليها ضوضاء (Noise)  لتحسين

 .فهم النموذج لبنية اللغة

  :(Back-translation) الترجمة العكسية .2

o  يتم استخدام النموذج ذاته لترجمة الجمل إلى اللغة الثانية ثم إعادة ترجمتها إلى اللغة

 .الأصلية لتقييم جودة الترجمة
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  :(Adversarial Training) التدريب الخصومي .3

o يتم استخدام مصنف (Discriminator) لتحديد لغة النصوص الناتجة عن التشفير 

(Encoding) مما يجُبر النموذج على إنتاج تمثيل لغوي محايد. 

  :الاعتماد على قواميس ثنائية غير موجهة .4

o يتم بناء قاموس ثنائي اللغة بشكل غير موجه باستخدام البيانات المونوغوية فقط. 

 
 أهمية البحث

 :إحداث نقلة نوعية في الترجمة الآلية

  يعُد هذا البحث خطوة جريئة نحو تطوير الترجمة الآلية للغات منخفضة الموارد أو المهددة

 .بالاندثار حيث لا تتوفر بيانات موازية

 أنه يمكن تحقيق أداء قريب من النماذج الموجهة يثبت البحث (Supervised Models) 

 .باستخدام بيانات مونوغوية فقط

 :تحسين الكفاءة والدقة

 أظهر النموذج نتائج مذهلة على مجموعات بيانات مثل Multi30k وWMT حيث حقق ،

الإنجليزية للترجمة بين  Multi30k على مجموعة بيانات 32.8تصل إلى  BLEU درجات

 .والفرنسية دون استخدام أي بيانات موازية

 يقلل الاعتماد على البيانات الموازية من تكلفة بناء أنظمة الترجمة. 

 :دعم اللغات منخفضة الموارد

 يمُكن تطبيق هذا النموذج على اللغات التي لا تملك موارد كافية لبناء أنظمة ترجمة موجهة. 

 
 التطبيقات المحتملة

  :النصوص في اللغات منخفضة المواردترجمة  .1

o  يمُكن استخدام هذا النهج لبناء أنظمة ترجمة للغات نادرة مثل لغات السكان

 .الأصليين

  :تحليل النصوص متعددة اللغات .2

o  يمُكن استخدام النموذج لفهم النصوص وتحليلها في مجالات مثل التجارة الدولية أو

 .البحوث الأكاديمية

  :الآلية توسيع نطاق الترجمة .3

o  يمُكن بناء أنظمة ترجمة بين اللغات التي لا تمتلك بيانات موازية باستخدام البيانات

 .المونوغوية فقط
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 القيود والتحديات

  :تعقيد التدريب .1

o  يتطلب النموذج موارد حاسوبية عالية، خاصة أثناء التدريب باستخدام الضوضاء

 .والترجمة العكسية

  :قيود جودة القاموس .2

o  يعتمد الأداء إلى حد كبير على جودة القاموس الثنائي المستخلص من البيانات

 .المونوغوية

  :صعوبة التعميم .3

o  قد يواجه النموذج تحديات في التعميم على لغات أو مجموعات بيانات تختلف تمامًا

 .عن البيانات المستخدمة في التدريب

 
 الإنجازات الرئيسية للبحث

  الترجمة غير الموجهة على مجموعات بيانات متعددةتحقيق أداء تنافسي في (Multi30k 

 .(WMTو

 تقديم نموذج يمُهد الطريق لتطوير أنظمة ترجمة فعالة دون الاعتماد على بيانات موازية. 

 تحسين دقة الترجمة الآلية مع تقليل الاعتماد على الموارد الموجهة. 

 

 يانات المونوغوية فقطالترجمة الآلية غير الموجهة باستخدام البلبحث: 

 :الكلمات المفتاحية

#آيرند #معالجة_اللغات_الطبيعية #مركز_أبحاث_الذكاء_الاصطناعي الذكاء_الاصطناعي #

 #الترجمة_الآلية #التعلم_غير_الموجه #اللغات_منخفضة_الموارد

Tags: 

#AI #Airnd_Center #NLP #Machine_Translation #Unsupervised_Learning 
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ABSTRACT 
 

Machine translation has recently achieved impressive performance thanks to re- 
cent advances in deep learning and the availability of large-scale parallel corpora. 
There have been numerous attempts to extend these successes to low-resource lan- 
guage pairs, yet requiring tens of thousands of parallel sentences. In this work, we 
take this research direction to the extreme and investigate whether it is possible to 
learn to translate even without any parallel data. We propose a model that takes 
sentences from monolingual corpora in two different languages and maps them 
into the same latent space. By learning to reconstruct in both languages from this 
shared feature space, the model effectively learns to translate without using any 
labeled data. We demonstrate our model on two widely used datasets and two lan- 
guage pairs, reporting BLEU scores of 32.8 and 15.1 on the Multi30k and WMT 
English-French datasets, without using even a single parallel sentence at training 
time. 

 

1 INTRODUCTION 
 

Thanks to recent advances in deep learning (Sutskever et al., 2014; Bahdanau et al., 2015) and the 
availability of large-scale parallel corpora, machine translation has now reached impressive perfor- 
mance on several language pairs (Wu et al., 2016). However, these models work very well only 
when provided with massive amounts of parallel data, in the order of millions of parallel sentences. 
Unfortunately, parallel corpora are costly to build as they require specialized expertise, and are often 
nonexistent for low-resource languages. Conversely, monolingual data is much easier to find, and 
many languages with limited parallel data still possess significant amounts of monolingual data. 

There have been several attempts at leveraging monolingual data to improve the quality of ma- chine 
translation systems in a semi-supervised setting (Munteanu et al., 2004; Irvine, 2013; Irvine & 
Callison-Burch, 2015; Zheng et al., 2017). Most notably, Sennrich et al. (2015a) proposed a very 
effective data-augmentation scheme, dubbed “back-translation”, whereby an auxiliary transla- tion 
system from the target language to the source language is first trained on the available parallel data, 
and then used to produce translations from a large monolingual corpus on the target side. The pairs 
composed of these translations with their corresponding ground truth targets are then used as 
additional training data for the original translation system. 

Another way to leverage monolingual data on the target side is to augment the decoder with a 
language model (Gulcehre et al., 2015). And finally, Cheng et al. (2016); He et al. (2016) have 
proposed to add an auxiliary auto-encoding task on monolingual data, which ensures that a translated 
sentence can be translated back to the original one. All these works still rely on several tens of 
thousands parallel sentences, however. 

Previous work on zero-resource machine translation has also relied on labeled information, not from 
the language pair of interest but from other related language pairs (Firat et al., 2016; Johnson et al., 
2016; Chen et al., 2017) or from other modalities (Nakayama & Nishida, 2017; Lee et al., 2017). 
The only exception is the work by Ravi & Knight (2011); Pourdamghani & Knight (2017), where 
the machine translation problem is reduced to a deciphering problem. Unfortunately, their method 
is limited to rather short sentences and it has only been demonstrated on a very simplistic setting 
comprising of the most frequent short sentences, or very closely related languages. 
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Figure 1: Toy illustration of the principles guiding the design of our objective function. Left (auto- 
encoding): the model is trained to reconstruct a sentence from a noisy version of it. x is the target, 

C(x) is the noisy input, x̂ is the reconstruction. Right (translation): the model is trained to translate 
a sentence in the other domain. The input is a noisy translation (in this case, from source-to-target) 
produced by the model itself, M , at the previous iteration (t), y = M (t)(x). The model is symmet- 
ric, and we repeat the same process in the other language. See text for more details. 

 

 

 
In this paper, we investigate whether it is possible to train a general machine translation system 
without any form of supervision whatsoever. The only assumption we make is that there exists a 
monolingual corpus on each language. This set up is interesting for a twofold reason. First, this is 
applicable whenever we encounter a new language pair for which we have no annotation. Second, it 
provides a strong lower bound performance on what any good semi-supervised approach is expected 
to yield. 

The key idea is to build a common latent space between the two languages (or domains) and to learn 
to translate by reconstructing in both domains according to two principles: (i) the model has to be 
able to reconstruct a sentence in a given language from a noisy version of it, as in standard denoising 
auto-encoders (Vincent et al., 2008). (ii) The model also learns to reconstruct any source sentence 
given a noisy translation of the same sentence in the target domain, and vice versa. For (ii), the 
translated sentence is obtained by using a back-translation procedure (Sennrich et al., 2015a), 
i.e. by using the learned model to translate the source sentence to the target domain. In addition to 
these reconstruction objectives, we constrain the source and target sentence latent representations to 
have the same distribution using an adversarial regularization term, whereby the model tries to fool 
a discriminator which is simultaneously trained to identify the language of a given latent sen- tence 
representation (Ganin et al., 2016). This procedure is then iteratively repeated, giving rise to 
translation models of increasing quality. To keep our approach fully unsupervised, we initialize our 
algorithm by using a na¨ıve unsupervised translation model based on a word by word translation of 
sentences with a bilingual lexicon derived from the same monolingual data (Conneau et al., 2017). 
As a result, and by only using monolingual data, we can encode sentences of both languages into 
the same feature space, and from there, we can also decode/translate in any of these languages; see 
Figure 1 for an illustration. 

While not being able to compete with supervised approaches using lots of parallel resources, we 
show in section 4 that our model is able to achieve remarkable performance. For instance, on the 
WMT dataset we can achieve the same translation quality of a similar machine translation system 
trained with full supervision on 100,000 sentence pairs. On the Multi30K-Task1 dataset we achieve 
a BLEU above 22 on all the language pairs, with up to 32.76 on English-French. 

Next, in section 2, we describe the model and the training algorithm. We then present experimental 
results in section 4. Finally, we further discuss related work in section 5 and summarize our findings 
in section 6. 

 

 

2 UNSUPERVISED NEURAL MACHINE TRANSLATION 
 

 

In this section, we first describe the architecture of the translation system, and then we explain how 
we train it. 
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2.1 NEURAL MACHINE TRANSLATION MODEL 
 

 

The translation model we propose is composed of an encoder and a decoder, respectively responsible 
for encoding source and target sentences to a latent space, and to decode from that latent space to the 
source or the target domain. We use a single encoder and a single decoder for both domains (Johnson 
et al., 2016). The only difference when applying these modules to different languages is the choice 
of lookup tables. 

Let us denote by WS the set of words in the source domain associated with the (learned) words 
embeddings ZS = (zs, ...., zs ), and by WT the set of words in the target domain associated 

1 |WS | 
with the embeddings ZT = (zt, ...., zt ), Z being the set of all the embeddings. Given an 

1 |WT | 

input sentence of m words x = (x1, x2, ..., xm) in a particular language l, l ∈ {src, tgt}, an 
encoder eθenc,Z (x, l) computes a sequence of m hidden states z = (z1, z2, ..., zm) by using the 

corresponding word embeddings, i.e. ZS if l = src and ZT if l = tgt; the other parameters θenc are 
instead shared between the source and target languages. For the sake of simplicity, the encoder will 
be denoted as e(x, l) in the following. These hidden states are vectors in Rn, n being the dimension 
of the latent space. 

A decoder dθdec,Z (z, l) takes as input z and a language l, and generates an output sequence y = 

(y1, y2, ..., yk), where each word yi is in the corresponding vocabulary WA. This decoder makes use 
of the corresponding word embeddings, and it is otherwise parameterized by a vector θdec that does 
not depend on the output language. It will thus be denoted d(z, l) in the following. To generate an 

output word yi, the decoder iteratively takes as input the previously generated word yi−1 (y0 being a 
start symbol which is language dependent), updates its internal state, and returns the word that has 
the highest probability of being the next one. The process is repeated until the decoder generates a 
stop symbol indicating the end of the sequence. 

In this article, we use a sequence-to-sequence model with attention (Bahdanau et al., 2015), without 
input-feeding. The encoder is a bidirectional-LSTM which returns a sequence of hidden states 
z = (z1, z2, ..., zm). At each step, the decoder, which is also an LSTM, takes as input the previous 
hidden state, the current word and a context vector given by a weighted sum over the encoder states. 
In all the experiments we consider, both encoder and decoder have 3 layers. The LSTM layers are 
shared between the source and target encoder, as well as between the source and target decoder. We 
also share the attention weights between the source and target decoder. The embedding and LSTM 
hidden state dimensions are all set to 300. Sentences are generated using greedy decoding. 

 

 

 

 

2.2 OVERVIEW OF THE METHOD 
 

 

We consider a dataset of sentences in the source domain, denoted by Dsrc, and another dataset in the 

target domain, denoted by Dtgt. These datasets do not correspond to each other, in general. We train 
the encoder and decoder by reconstructing a sentence in a particular domain, given a noisy version 
of the same sentence in the same or in the other domain. 

At a high level, the model starts with an unsupervised na¨ıve translation model obtained by making 
word-by-word translation of sentences using a parallel dictionary learned in an unsupervised way 
(Conneau et al., 2017). Then, at each iteration, the encoder and decoder are trained by minimizing an 
objective function that measures their ability to both reconstruct and translate from a noisy version 
of an input training sentence. This noisy input is obtained by dropping and swapping words in the 
case of the auto-encoding task, while it is the result of a translation with the model at the previous 
iteration in the case of the translation task. In order to promote alignment of the latent distribution 
of sentences in the source and the target domains, our approach also simultaneously learns a dis- 
criminator in an adversarial setting. The newly learned encoder/decoder are then used at the next 
iteration to generate new translations, until convergence of the algorithm. At test time and despite 
the lack of parallel data at training time, the encoder and decoder can be composed into a standard 
machine translation system. 
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2.3 DENOISING  AUTO-ENCODING 
 

Training an autoencoder of sentences is a trivial task, if the sequence-to-sequence model is provided 
with an attention mechanism like in our work 1. Without any constraint, the auto-encoder very 
quickly learns to merely copy every input word one by one. Such a model would also perfectly copy 
sequences of random words, suggesting that the model does not learn any useful structure in the 
data. To address this issue, we adopt the same strategy of Denoising Auto-encoders (DAE) (Vincent 
et al., 2008)), and add noise to the input sentences (see Figure 1-left), similarly to Hill et al. (2016). 
Considering a domain l = src or l = tgt, and a stochastic noise model denoted by C which operates 
on sentences, we define the following objective function: 

Lauto(θenc, θdec, Z, l) = Ex∼Dl,xˆ∼d(e(C(x),A),A) [∆( x̂ , x)] (1) 

where x̂ ∼ d(e(C(x), l), l) means that x̂ is a reconstruction of the corrupted version of x, with x 
sampled from the monolingual dataset DA. In this equation, ∆ is a measure of discrepancy between 
the two sequences, the sum of token-level cross-entropy losses in our case. 

 
Noise model C(x) is a randomly sampled noisy version of sentence x. In particular, we add two 
different types of noise to the input sentence. First, we drop every word in the input sentence with 
a probability pwd. Second, we slightly shuffle the input sentence. To do so, we apply a random 

permutation σ to the input sentence, verifying the condition ∀i ∈ {1, n}, |σ(i) − i| ≤ k where n is 
the length of the input sentence, and k is a tunable parameter. 

To generate a random permutation verifying the above condition for a sentence of size n, we generate 
a random vector q of size n, where qi = i + U (0, α), and U is a draw from the uniform distribution 
in the specified range. Then, we define σ to be the permutation that sorts the array q. In particular, 

α < 1 will return the identity, α = +∞ can return any permutation, and α = k + 1 will return 
permutations σ verifying ∀i ∈ {1, n}, |σ(i) − i| ≤ k. Although biased, this method generates 
permutations similar to the noise observed with word-by-word translation. 

In our experiments, both the word dropout and the input shuffling strategies turned out to have a 
critical impact on the results, see also section 4.5, and using both strategies at the same time gave us 

the best performance. In practice, we found pwd = 0.1 and k = 3 to be good parameters. 

 

2.4 CROSS DOMAIN TRAINING 
 

The second objective of our approach is to constrain the model to be able to map an input sentence 
from a the source/target domain l1 to the target/source domain l2, which is what we are ultimately 

interested in at test time. The principle here is to sample a sentence x ∈ DA1 , and to generate a 
corrupted translation of this sentence in l2. This corrupted version is generated by applying the 
current translation model denoted M to x such that y = M (x). Then a corrupted version C(y) is 
sampled (see Figure 1-right). The objective is thus to learn the encoder and the decoder such that 
they can reconstruct x from C(y). The cross-domain loss can be written as: 

Lcd(θenc, θdec, Z, l1, l2) = Ex∼Dl ,xˆ∼d(e(C(M (x)),A2),A1) [∆( x̂ , x)] (2) 

where ∆ is again the sum of token-level cross-entropy losses. 

2.5 ADVERSARIAL TRAINING 
 

Intuitively, the decoder of a neural machine translation system works well only when its input is 
produced by the encoder it was trained with, or at the very least, when that input comes from a 
distribution very close to the one induced by its encoder. Therefore, we would like our encoder to 
output features in the same space regardless of the actual language of the input sentence. If such 
condition is satisfied, our decoder may be able to decode in a certain language regardless of the 
language of the encoder input sentence. 

Note however that the decoder could still produce a bad translation while yielding a valid sentence in 
the target domain, as constraining the encoder to map two languages in the same feature space does 

 

1Even without attention, reconstruction can be surprisingly easy, depending on the length of the input sen- 
tence and the dimensionality of the embeddings, as suggested by concentration of measure and theory of sparse 
recovery (Donoho, 2006). 
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not imply a strict correspondence between sentences. Fortunately, the previously introduced loss for 
cross-domain training in equation 2 mitigates this concern. Also, recent work on bilingual lexical 
induction has shown that such a constraint is very effective at the word level, suggesting that it may 
also work at the sentence level, as long as the two latent representations exhibit strong structure in 
feature space. 

In order to add such a constraint, we train a neural network, which we will refer to as the discrimina- 
tor, to classify between the encoding of source sentences and the encoding of target sentences (Ganin 
et al., 2016). The discriminator operates on the output of the encoder, which is a sequence of latent 

vectors (z1, ..., zm), with zi ∈ Rn, and produces a binary prediction about the language of the en- 

coder input sentence: pD(l|z1, ..., zm) ∝ 
Qm 

j=1 
pD(l|zj) , with pD : Rn → [0; 1], where 0 corresponds 

to the source domain, and 1 to the target domain. 

The discriminator is trained to predict the language by minimizing the following cross-entropy loss: 

LD(θD|θ, Z) = −E(xi,Ai)[log pD(li|e(xi, li))], where (xi, li) corresponds to sentence and lan- 
guage id pairs uniformly sampled from the two monolingual datasets, θD are the parameters of the 

discriminator, θenc are the parameters of the encoder, and Z are the encoder word embeddings. 

The encoder is trained instead to fool the discriminator: 

Ladv(θenc, Z|θD) = −E(xi,Ai)[log pD(lj|e(xi, li))] (3) 

with lj = l1 if li = l2, and vice versa. 

Final Objective function The final objective function at one iteration of our learning algorithm is 
thus: 

L(θenc, θdec, Z) =λauto[Lauto(θenc, θdec, Z, src) + Lauto(θenc, θdec, Z, tgt)]+ 

λcd[Lcd(θenc, θdec, Z, src, tgt) + Lcd(θenc, θdec, Z, tgt, src)]+ 

λadv Ladv (θenc, Z|θD) 

 
(4) 

where λauto, λcd, and λadv are hyper-parameters weighting the importance of the auto-encoding, 

cross-domain and adversarial loss. In parallel, the discriminator loss LD is minimized to update the 
discriminator. 

 

3 TRAINING 
 

In this section we describe the overall training algorithm and the unsupervised criterion we used to 
select hyper-parameters. 

 

3.1 ITERATIVE TRAINING 
 

The final learning algorithm is described in Algorithm 1 and the general architecture of the model is 
shown in Figure 2. As explained previously, our model relies on an iterative algorithm which starts 

from an initial translation model M (1) (line 3). This is used to translate the available monolingual 
data, as needed by the cross-domain loss function of Equation 2. At each iteration, a new encoder 
and decoder are trained by minimizing the loss of Equation 4 – line 7 of the algorithm. Then, a new 
translation model M (t+1) is created by composing the resulting encoder and decoder, and the process 
repeats. 

To jump start the process, M (1) simply makes a word-by-word translation of each sentence using a 
parallel dictionary learned using the unsupervised method proposed by Conneau et al. (2017), which 
only leverages monolingual data. 

The intuition behind our algorithm is that as long as the initial translation model M (1) retains at least 
some information of the input sentence, the encoder will map such translation into a representation 
in feature space that also corresponds to a cleaner version of the input, since the encoder is trained to 
denoise. At the same time, the decoder is trained to predict noiseless outputs, conditioned on noisy 
features. Putting these two pieces together will produce less noisy translations, which will enable 
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better back-translations at the next iteration, and so on so forth. 
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Figure 2: Illustration of the proposed architecture and training objectives. The architecture is a 
sequence to sequence model, with both encoder and decoder operating on two languages depending 
on an input language identifier that swaps lookup tables. Top (auto-encoding): the model learns to 
denoise sentences in each domain. Bottom (translation): like before, except that we encode from 
another language, using as input the translation produced by the model at the previous iteration (light 
blue box). The green ellipses indicate terms in the loss function. 

 

Algorithm 1 Unsupervised Training for Machine Translation 

1:  procedure TRAINING(Dsrc, Dtgt, T ) 
2: Infer bilingual dictionary using monolingual data (Conneau et al., 2017) 

3: M (1) ← unsupervised word-by-word translation model using the inferred dictionary 
4: for t = 1, T do 
5: using M (t), translate each monolingual dataset 
6: // discriminator training & model training as in eq. 4 

7: θdiscr ← arg min LD, θenc, θdec, Z ← arg min L 
8: M (t+1) ← e(t) ◦ d(t) // update MT model 
9: end for 

10: return M (T +1) 
11: end procedure 

 

 

 

3.2 UNSUPERVISED MODEL SELECTION CRITERION 
 

In order to select hyper-parameters, we wish to have a criterion correlated with the translation qual- 
ity. However, we do not have access to parallel sentences to judge how well our model translates, 
not even at validation time. Therefore, we propose the surrogate criterion which we show correlates 
well with BLEU (Papineni et al., 2002), the metric we care about at test time. 

For all sentences x in a domain l1, we translate these sentences to the other domain l2, and then 
translate the resulting sentences back to l1. The quality of the model is then evaluated by computing 
the BLEU score over the original inputs and their reconstructions via this two-step translation pro- 
cess. The performance is then averaged over the two directions, and the selected model is the one 
with the highest average score. 

Given an encoder e, a decoder d and two non-parallel datasets Dsrc and Dtgt, we denote 
Msrc→tgt(x) = d(e(x, src), tgt) the translation model from src to tgt, and Mtgt→src the model 
in the opposite direction. Our model selection criterion MS(e, d, Dsrc, Dtgt) is: 

1 
MS(e, d, Dsrc, Dtgt)  = 

2 
Ex∼Dsrc [BLEU(x, Msrc→tgt ◦ Mtgt→src(x))] + 

1 

2 
Ex∼Dtgt 

[BLEU(x, Mtgt→src ◦ Msrc→tgt (x))] (5) 

Figure 3 shows a typical example of the correlation between this measure and the final translation 
model performance (evaluated here using a parallel dataset). 

The unsupervised model selection criterion is used both to a) determine when to stop training and 
b) to select the best hyper-parameter setting across different experiments. In the former case, the 
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Figure 3: Unsupervised model selection. 
BLEU score of the source to target and tar- 
get to source models on the Multi30k-Task1 
English-French dataset as a function of the 
number of passes through the dataset at it- 
eration (t) = 1 of the algorithm (training 
M (2) given M (1)). BLEU correlates very 
well with the proposed model selection crite- 
rion, see Equation 5. 

 

 

 

 

 
Spearman correlation coefficient between the proposed criterion and BLEU on the test set is 0.95 in 
average. In the latter case, the coefficient is in average 0.75, which is fine but not nearly as good. 
For instance, the BLEU score on the test set of models selected with the unsupervised criterion are 
sometimes up to 1 or 2 BLEU points below the score of models selected using a small validation set 
of 500 parallel sentences. 

 

4 EXPERIMENTS 

 

In this section, we first describe the datasets and the pre-processing we used, then we introduce the 
baselines we considered, and finally we report the extensive empirical validation proving the 
effectiveness of our method. We will release the code to the public once the revision process is over. 

 

4.1 DATASETS 
 

In our experiments, we consider the English-French and English-German language pairs, on three 
different datasets. 

 
WMT’14 English-French We use the full training set of 36 million pairs, we lower-case them and 
remove sentences longer than 50 words, as well as pairs with a source/target length ratio above 1.5, 
resulting in a parallel corpus of about 30 million sentences. Next, we build monolingual corpora by 
selecting the English sentences from 15 million random pairs, and selecting the French sentences 
from the complementary set. The former set constitutes our English monolingual dataset. The latter 
set is our French monolingual dataset. The lack of overlap between the two sets ensures that there 
is not exact correspondence between examples in the two datasets. 

The validation set is comprised of 3,000 English and French sentences extracted from our mono- 
lingual training corpora described above. These sentences are not the translation of each other, and 
they will be used by our unsupervised model selection criterion, as explained in 3.2. Finally, we 
report results on the full newstest2014 dataset. 

 
WMT’16 English-German We follow the same procedure as above to create monolingual train- 
ing and validation corpora in English and German, which results in two monolingual training corpora 
of 1.8 million sentences each. We test our model on the newstest2016 dataset. 

 
Multi30k-Task1 The task 1 of the Multi30k dataset (Elliott et al., 2016) has 30,000 images, with 
annotations in English, French and German, that are translations of each other. We consider the 
English-French and English-German pairs. We disregard the images and only consider the paral- 
lel annotations, with the provided training, validation and test sets, composed of 29,000, 1,000 and 
1,000 pairs of sentences respectively. For both pairs of languages and similarly to the WMT datasets 
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 MMT1 en-fr MMT1 de-en WMT en-fr WMT de-en 

Monolingual sentences 14.5k 14.5k 15M 1.8M 

Vocabulary size 10k / 11k 19k / 10k 67k / 78k 80k / 46k 

Table 1: Multi30k-Task1 and WMT datasets statistics. To limit the vocabulary size in the WMT 
en-fr and WMT de-en datasets, we only considered words with more than 100 and 25 occurrences, 
respectively. 

 

 
above, we split the training and validation sets into monolingual corpora, resulting in 14,500 mono- 
lingual source and target sentences in the training set, and 500 sentences in the validation set. 

Table 1 summarizes the number of monolingual sentences in each dataset, along with the vocabulary 
size. To limit the vocabulary size on the WMT en-fr and WMT de-en datasets, we only considered 
words with more than 100 and 25 occurrences, respectively. 

 

4.2 BASELINES 

 

Word-by-word translation (WBW) The first baseline is a system that performs word-by-word 
translations of the input sentences using the inferred bilingual dictionary (Conneau et al., 2017). This 
baseline provides surprisingly good results for related language pairs, like English-French, where 
the word order is similar, but performs rather poorly on more distant pairs like English-German, as 
can be seen in Table 2. 

 
Word reordering (WR) After translating word-by-word as in WBW, here we reorder words using 
an LSTM-based language model trained on the target side. Since we cannot exhaustively score every 
possible word permutation (some sentences have about 100 words), we consider all pairwise swaps 
of neighboring words, we select the best swap, and iterate ten times. We use this baseline only on 
the WMT dataset that has a large enough monolingual data to train a language model. 

 
Oracle Word Reordering (OWR) Using the reference, we produce the best possible generation 
using only the words given by WBW. The performance of this method is an upper-bound of what 
any model could do without replacing words. 

 
Supervised Learning We finally consider exactly the same model as ours, but trained with super- 
vision, using the standard cross-entropy loss on the original parallel sentences. 

 

4.3 UNSUPERVISED DICTIONARY LEARNING 

 

To implement our baseline and also to initialize the embeddings Z of our model, we first train word 
embeddings on the source and target monolingual corpora using fastText (Bojanowski et al., 2017), 
and then we apply the unsupervised method proposed by Conneau et al. (2017) to infer a bilingual 
dictionary which can be use for word-by-word translation. 

Since WMT yields a very large-scale monolingual dataset, we obtain very high-quality embed- 
dings and dictionaries, with an accuracy of 84.48% and 77.29% on French-English and German- 
English, which is on par with what could be obtained using a state-of-the-art supervised alignment 
method (Conneau et al., 2017). 

On the Multi30k datasets instead, the monolingual training corpora are too small to train good word 
embeddings (more than two order of magnitude smaller than WMT). We therefore learn word vectors 
on Wikipedia using fastText2. 

 
2Word vectors downloaded from: https://github.com/facebookresearch/fastText 

https://github.com/facebookresearch/fastText
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en-fr 
Multi30k-Task1 

fr-en de-en 
 

en-de 

 

en-fr 
WMT 

fr-en de-en 

 

en-de 

Supervised 56.83 50.77 38.38 35.16 27.97 26.13 25.61 21.33 

word-by-word 8.54 16.77 15.72 5.39 6.28 10.09 10.77 7.06 
word reordering - - - - 6.68 11.69 10.84 6.70 

oracle word reordering 11.62 24.88 18.27 6.79 10.12 20.64 19.42 11.57 

Our model: 1st iteration 27.48 28.07 23.69 19.32 12.10 11.79 11.10 8.86 
Our model: 2nd iteration 31.72 30.49 24.73 21.16 14.42 13.49 13.25 9.75 

Our model: 3rd iteration 32.76 32.07 26.26 22.74 15.05 14.31 13.33 9.64 

Table 2: BLEU score on the Multi30k-Task1 and WMT datasets using greedy decoding. 

 

 

4.4 EXPERIMENTAL DETAILS 
 

Discriminator Architecture The discriminator is a multilayer perceptron with three hidden layers 
of size 1024, Leaky-ReLU activation functions and an output logistic unit. Following Goodfellow 

(2016), we include a smoothing coefficient s = 0.1 in the discriminator predictions. 

 
Training Details The encoder and the decoder are trained using Adam (Kingma & Ba, 2014), with 
a learning rate of 0.0003, β1 = 0.5, and a mini-batch size of 32. The discriminator is trained using 
RMSProp (Tieleman & Hinton, 2012) with a learning rate of 0.0005. We evenly alternate between 
one encoder-decoder and one discriminator update. We set λauto = λcd = λadv = 1. 

 

4.5 EXPERIMENTAL RESULTS 
 

Table 2 shows the BLEU scores achieved by our model and the baselines we considered. First, we 
observe that word-by-word translation is surprisingly effective when translating into English, obtain- 
ing a BLEU score of 16.77 and 10.09 for fr-en on respectively Multi30k-Task1 and WMT datasets. 
Word-reordering only slightly improves upon word-by-word translation. Our model instead, clearly 
outperforms these baselines, even on the WMT dataset which has more diversity of topics and sen- 
tences with much more complicated structure. After just one iteration, we obtain a BLEU score of 
27.48 and 12.10 for the en-fr task. Interestingly, we do even better than oracle reordering on some 
language pairs, suggesting that our model not only reorders but also correctly substitutes some words. 
After a few iterations, our model obtains BLEU of 32.76 and 15.05 on Multi30k-Task1 and WMT 
datasets for the English to French task, which is rather remarkable. 

 
Comparison with supervised approaches Here, we assess how much labeled data are worth our 
two large monolingual corpora. On WMT, we trained the very same NMT architecture on both 
language pairs, but with supervision using various amounts of parallel data. Figure 4-right shows 
the resulting performance. Our unsupervised approach obtains the same performance than a 
supervised NMT model trained on about 100,000 parallel sentences, which is impressive. Of course, 
adding more parallel examples allows the supervised approach to outperform our method, but the 
good performance of our unsupervised method suggests that it could be very effective for low-
resources languages where no parallel data are available. Moreover, these results open the door to 
the development of semi-supervised translation models, which will be the focus of future 
investigation. With a phrase-based machine translation system, we obtain 21.6 and 22.4 BLEU on 
WMT en-fr and fr-en, which is better than the supervised NMT baseline we report for that same 
amount of parallel sentences, which is 16.8 and 16.4 respectively. However, if we train the same 
supervised NMT model with BPE (Sennrich et al., 2015b), we obtain 22.6 BLEU for en-fr, 
suggesting that our results on unsupervised machine translation could also be improved by using 
BPE, as this removes unknown words (about 9% of the words in de-en are replaced by the unknown 
token otherwise). 

 
Iterative Learning Figure 4-left illustrates the quality of the learned model after each iteration of 
the learning process in the language pairs of Multi30k-Task1 dataset, other results being provided 
in Table 2. One can see that the quality of the obtained model is high just after the first iteration 
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Figure 4: Left: BLEU as a function of the number of iterations of our algorithm on the Multi30k- 
Task1 datasets. Right: The curves show BLEU as a function of the amount of parallel data on WMT 
datasets. The unsupervised method which leverages about 15 million monolingual sentences in each 
language, achieves performance (see horizontal lines) close to what we would obtain by employing 
100,000 parallel sentences. 

 

Source un homme est debout pre`s d’ une se´rie de jeux vide´o dans un bar . 
Iteration 0 a man is seated near a series of games video in a bar . 
Iteration 1 a man is standing near a closeup of other games in a bar . 
Iteration 2 a man is standing near a bunch of video video game in a bar . 
Iteration 3 a man is standing near a bunch of video games in a bar . 
Reference a man is standing by a group of video games in a bar . 

Source une femme aux cheveux roses habille´e en noir parle a  ̀un homme . 
Iteration 0 a woman at hair roses dressed in black speaks to a man . 
Iteration 1 a woman at glasses dressed in black talking to a man . 
Iteration 2 a woman at pink hair dressed in black speaks to a man . 
Iteration 3 a woman with pink hair dressed in black is talking to a man . 
Reference a woman with pink hair dressed in black talks to a man . 

Source une photo d’ une rue bonde´e en ville . 
Iteration 0 a photo a street crowded in city . 
Iteration 1 a picture of a street crowded in a city . 
Iteration 2 a picture of a crowded city street . 
Iteration 3 a picture of a crowded street in a city . 
Reference a view of a crowded city street . 

 
Table 3: Unsupervised translations. Examples of translations on the French-English pair of the 
Multi30k-Task1 dataset. Iteration 0 corresponds to word-by-word translation. After 3 iterations, the 
model generates very good translations. 

 

 
of the process. Subsequent iterations yield significant gains although with diminishing returns. At 
iteration 3, the performance gains are marginal, showing that our approach quickly converges. 

Table 3 shows examples of translations of three sentences on the Multi30k dataset, as we iterate. 
Iteration 0 corresponds to the word-by-word translation obtained with our cross-lingual dictionary, 
which clearly suffers from word order issues. We can observe that the quality of the translations 
increases at every iteration. 

 
Ablation Study We perform an ablation study to understand the importance of the different com- 
ponents of our system. To this end, we have trained multiple versions of our model with some 
missing components: the discriminator, the cross-domain loss, the auto-encoding loss, etc. Table 4 
shows that the best performance is obtained with the simultaneous use of all the described elements. 
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 en-fr fr-en de-en en-de 

λcd = 0 25.44 27.14 20.56 14.42 
Without pretraining 25.29 26.10 21.44 17.23 
Without pretraining, λcd = 0 8.78 9.15 7.52 6.24 
Without noise, C(x) = x 16.76 16.85 16.85 14.61 
λauto = 0 24.32 20.02 19.10 14.74 
λadv = 0 24.12 22.74 19.87 15.13 

Full 27.48 28.07 23.69 19.32 

Table 4: Ablation study on the Multi30k-Task1 dataset. 

 

 
The most critical component is the unsupervised word alignment technique, either in the form of 
a back-translation dataset generated using word-by-word translation, or in the form of pretrained 
embeddings which enable to map sentences of different languages in the same latent space. 

On the English-French pair of Multi30k-Task1, with a back-translation dataset but without pre- 
trained embeddings, our model obtains a BLEU score of 25.29 and 26.10, which is only a few points 
below the model using all components. Similarly, when the model uses pretrained embed- dings 
but no back-translation dataset (when λcd = 0), it obtains 25.44 and 27.14. On the other hand, a model 
that does not use any of these components only reaches 8.78 and 9.15 BLEU. 

The adversarial component also significantly improves the performance of our system, with a differ- 
ence of up to 5.33 BLEU in the French-English pair of Multi30k-Task1. This confirms our intuition 
that, to really benefit from the cross-domain loss, one has to ensure that the distribution of latent 
sentence representations is similar across the two languages. Without the auto-encoding loss (when 
λauto = 0), the model only obtains 20.02, which is 8.05 BLEU points below the method using all 
components. Finally, performance is greatly degraded also when the corruption process of the input 
sentences is removed, as the model has much harder time learning useful regularities and merely 
learns to copy input data. 

 

5 RELATED WORK 
 

A similar work to ours is the style transfer method with non-parallel text by Shen et al. (2017). The 
authors consider a sequence-to-sequence model, where the latent state given to the decoder is also 
fed to a discriminator. The encoder is trained with the decoder to reconstruct the input, but also 
to fool the discriminator. The authors also found it beneficial to train two discriminators, one for 
the source and one for the target domain. Then, they trained the decoder so that the recurrent hid- 
den states during the decoding process of a sentence in a particular domain are not distinguishable 
according to the respective discriminator. This algorithm, called Professor forcing, was initially in- 
troduced by Lamb et al. (2016) to encourage the dynamics of the decoder observed during inference 
to be similar to the ones observed at training time. 

Similarly, Xie et al. (2017) also propose to use an adversarial training approach to learn represen- 
tations invariant to specific attributes. In particular, they train an encoder to map the observed data 
to a latent feature space, and a model to make predictions based on the encoder output. To remove 
bias existing in the data from the latent codes, a discriminator is also trained on the encoder outputs 
to predict specific attributes, while the encoder is jointly trained to fool the discriminator. They 
show that the obtained invariant representations lead to better generalization on classification and 
generation tasks. 

Before that, Hu et al. (2017) trained a variational autoencoder (Kingma & Welling, 2013) where the 
decoder input is the concatenation of an unstructured latent vector, and a structured code representing 
the attribute of the sentence to generate. A discriminator is trained on top of the decoder to classify 
the labels of generated sentences, while the decoder is trained to satisfy this discriminator. Because 
of the non-differentiability of the decoding process, at each step, their decoder takes as input the 
probability vector predicted at the previous step. 

Perhaps, the most relevant prior work is by He et al. (2016), who essentially optimizes directly for 
the model selection metric we propose in section 3.2. One drawback of their approach, which has 
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not been applied to the fully unsupervised setting, is that it requires to back-propagate through the 
sequence of discrete predictions using reinforcement learning-based approaches which are notori- 
ously inefficient. In this work, we instead propose to a) use a symmetric architecture, and b) freeze 
the translator from source to target when training the translator from target to source, and vice versa. 
By alternating this process we operate with a fully differentiable model and we efficiently converge. 

In the vision domain, several studies tackle the unsupervised image translation problem, where the 
task consists in mapping two image domains A and B, without paired supervision. For instance, in 
the CoGAN architecture (Liu & Tuzel, 2016), two generators are trained to learn a common repre- 
sentation space between two domains, by sharing some of their convolutional layers. This is similar 
to our strategy of sharing the LSTM weights across the source and target encoders and decoders. 
Liu et al. (2017) propose a similar approach, based on variational autoencoders, and generative ad- 
versarial networks (Goodfellow et al., 2014). Taigman et al. (2016) use similar approaches for emoji 
generation, and apply a regularization term to the generator so that it behaves like an identity map- 
ping when provided with input images from the target domain. Zhu et al. (2017) introduced a cycle 
consistency loss, to capture the intuition that if an image is mapped from A to B, then from B to A, 
then the resulting image should be identical to the input one. 

Our approach is also reminiscent of the Fader Networks architecture (Lample et al., 2017), where a 
discriminator is used to remove the information related to specific attributes from the latent states of 
an autoencoder of images. The attribute values are then given as input to the decoder. The decoder 
is trained with real attributes, but at inference, it can be fed with any attribute values to generate 
variations of the input images. The model presented in this paper can be seen as an extension to the 
text domain of the Fader Networks, where the attribute is the language itself. 

 

6 CONCLUSION 
 

We presented a new approach to neural machine translation where a translation model is learned 
using monolingual datasets only, without any alignment between sentences or documents. The 
principle of our approach is to start from a simple unsupervised word-by-word translation model, 
and to iteratively improve this model based on a reconstruction loss, and using a discriminator to 
align latent distributions of both the source and the target languages. Our experiments demonstrate 
that our approach is able to learn effective translation models without any supervision of any sort. 
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